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Only allowed documents: Personal written notes (courses and TDs), lecture handouts,
and bilingual dictionary. The two problems are independent. Duration: two hours.

1 FIRST PROBLEM:Cell motility on substrate

We consider a living flat cell, on rest on a solid substrate. Its thickness is assumed
constant.The interior of the cell is modeled by a fluid containing actin monomers but
also actin polymers that can be considered as rigid sticks. The edge of the cell is a lipid
membrane, responsible for a surface tension effect. We neglect all other ingredients in
the cell and we focus on possible shape deformations. We do not consider global dis-
placement of the cell but only possible deformations. The actin sticks are polarized: it
means that each of them has a tip + where monomers adhere (polymerization process)
and a tip − where the monomers escape (depolymerization).

• Justify by a drawing that this effect polymerization /depolymerization can induce
the displacement on the whole stick and thus can explain the cell deformation.

1.1 Mass-Flux equation

Polymerization requires proteins located at the cell surface, while depolymerization
occurs everywhere inside the cell. We call ~v the velocity of the fluid in the laboratory
frame.

• Justify the following balance equation giving the density of actin polymers ρ, in
the laboratory frame:

∂ρ

∂t
+∇ · (ρ ~v) = −ρkd + ρFVpδ[(~r − ~rint) · ~n] (1)

where δ[] is the Dirac’s distribution in one dimension, ~rint is the position of an
arbitrary point on the interface, obtained by projection, ~n is the normal in the
outer direction from the cell border.

• Give the physical significance of kd and Vp, knowing that F is a form factor which
can depend on the point of the interface in consideration so can be dependent on
the curvilinear coordinate s, defined on the cell border δΩ(t)

1.2 Relationship between velocities

We assume that the density ρ is constant over space and time and the fluid incom-
pressible.

• By integrating Eq.(1) on the surface of the cell, deduce a relation between kd, Vp
and R0, the cell radius when the cell is circular.
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• Then consider the cell border and deduce that the normal fluid velocity satisfies
the following equation:

~v. · ~n+ FVp = ~VδΩ · ~n (2)

~VδΩ is the speed of a point on the edge of the cell.

1.3 Fluid flow equations

• Write the two-dimensional Stokes equation satisfied by the velocity of the fluid
~v in the cell, taking into account the viscous friction force between the cell and
the substrate. ζ is the friction coefficient. We will call µ the viscosity of the fluid
inside the cell, R0 the typical size of the cell and ζ the coefficient of friction.

• Show that in the limit where the coefficient of friction is very large (in a sense to
be defined), we find a Darcy-type law for the hydrodynamics of the fluid.

1.4 Summary of the equations for the fluid flow

• Summarize all the equations giving the shape of the cell.

• Introduce the velocity potential φ0.

• Compare these equations with the Saffman-Taylor problem in the same geometry,
in an infinite Hele-Shaw cell. Is φ0 Laplacian?

1.5 Particular solution

We will choose F = 1.

• Show that the static round shape is one possible solution.

• Give the expression of the potential φ0 in this case. Recover the relation between
kd, R0 and Vp.

1.6 Stability analysis

We would like to study the stability of such solution with respect to fluctuations of the
interface contour. To do this, we assume that the edge fluctuates around the average
position according to:

r = R0(1 + εne
Ωntcos(nθ)) (3)

• Deduce that the fluctuations of the velocity potential due to this perturbation
can be writen as:

δφ(r, θ) = anr
neΩntcos(nθ) (4)

• Taking into account the Laplace’s law (the surface tension being γ), show that
the relation between both small quantities, εn and an, reads:

an =
εn
Rn

0

(
kd
2
R2

0 −
γ

ζR0

(n2 − 1)

)
(5)
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We give here the curvature κ of a curve described in polar coordinates:

|κ| = |r
2 + 2r2

θ − r · rθθ|
(r2 + r2

θ)
3/2

(6)

where rθ (resp. rθθ) is the first derivative (resp. the second) of r with respect to
θ.

1.7 Shape stability

• Deduce the growth rate of the perturbation Ωn. Discuss the stability of the
solution?

2 SECOND PROBLEM:Structures in activator-inhibitor

system

The aim of this exercise is to explain the pattern observed on shells or animals. The
model is due to Meinhardt and collaborators (2012). They consider the following set
of equations:

∂ã

∂t̃
= Da∆ã+ µa(

ã2

h̃
− ã) + σa (7)

∂h̃

∂t̃
= Dh∆h̃+ µh(ã

2 − h̃) (8)

where ∆ is the Laplacian in 2 dimensions, Da and Dh the diffusion coefficient.

• What is the the physical meaning of the coefficients µa, µh and σa

• Why do the physicists study such equations??

2.1 Dimensionless analysis

We use µa to define a time scale and Dh a length scale.

• Show that, written in dimensionless units, the previous equations become:

∂a

∂t
= D∆a+ (

a2

h
− a) + σ (9)

∂h

∂t
= ∆h+ µ(a2 − h) (10)

Tildas are dropped for dimensionless variables. Define again a, h,D, σ and µ.

2.2 Homogeneous solution

• The system occupies a domain D such that D = [x, 0 < x < L] with imposed
border conditions: ∂xa = ∂xh = 0 in x = 0 and x = L. Find the homogeneous
static solution.
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2.3 Spatial perturbations

We consider a perturbation of these solutions with weak amplitude:

• What are the possible values of k?

2.4 Time dependance of the perturbations

• Deduce from the Jacobian of the dynamical system given by Eq.(9) the following
dispersion relation:

ω2
n + αωn + β = 0 (11)

• Give the value of α and β.

• Discuss the stability of the pattern according to the sign of α and β. Give the
conditions for observing oscillating patterns by changing the length of the box.
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