Home > English > Topics

New electronic states of matter


New electronic states of matter

The existence of strong correlations between electrons induces novel and unexpected states in solids, such as high temperature superconductivity, charge or spin orderings, quantum hall effects or spin liquids. A central activity in Laboratoire de Physique des Solides is devoted to studies of these novel states, both from an experimental and a theoretical point of vue.

Supraconductivité
a magnet in levitation above a superconductor
Spins frustrés
frustrated spins exhibiting a zero energy mode
Conducteur moléculaire
a one-dimensional molecular conductor

Scientific Teams:
 
- rubrique 148
- Electronic Correlations and High Pressures
- rubrique 156
- Spectroscopies of quantum materials
- Artificial structures and self-organisation
- Superconductivity
- Theory
- Theory 2

Research topics:
Experimental techniques and materials:
 
- low dimension conductors
- superconductivity
- spin liquids and geometric frustration
- strongly correlated fermions
- charge and spin orders
- Quantum Hall effects
- ultra-cold atomic gaz
- Kondo effect and heavy fermions
- nonvolatile memories
 
- high pressure
- transport measurements (resistivity, hall effect...)
- magnetic measurements (squid, torque...)
- Nuclear Magnetic Resonance (NMR)
- Muon Spin Resonance (muSR)
- photoemission
- X-ray
- low temperatures
- thin films
- material synthesys and chemistry
- Dynamical Mean Field Theories

- oxydes with novel properties

- oganic conductors

- fullerides

- cuprates superconductors

- cobaltites

 

Recent publications:
 

2019



  • Ablett JM, Prieur D, Céolin D, et al. The GALAXIES inelastic hard X-ray scattering end-station at Synchrotron SOLEIL. Journal of Synchrotron Radiation. 2019;26(1):263-271. Available at: http://scripts.iucr.org/cgi-bin/paper?S160057751801559X. Accessed February 13, 2019.

  • Barthélemy Q, Puphal P, Zoch KM, et al. Local study of the insulating quantum kagome antiferromagnets YCu 3 ( OH ) 6 O x Cl 3 − x ( x = 0 , 1 / 3 ). Physical Review Materials. 2019;3(7):074401.

  • Chen S, Ribeiro-Palau R, Yang K, et al. Competing Fractional Quantum Hall and Electron Solid Phases in Graphene. Physical Review Letters. 2019;122(2).

  • Fruchter L, Brouet V, Brisset F, Moutaabbid H, Klein Y. Growth facets of SrIrO <sub>3</sub> thin films and single crystals. CrystEngComm. 2019;21(25):3822-3828.

  • Heinze L, Bastien G, Ryll B, et al. Magnetic phase diagram of the frustrated spin chain compound linarite PbCuSO 4 ( OH ) 2 as seen by neutron diffraction and H 1 -NMR. Physical Review B. 2019;99(9):094436.


  • Henck H, Pierucci D, Zribi J, et al. Evidence of direct electronic band gap in two-dimensional van der Waals indium selenide crystals. Physical Review Materials. 2019;3(3):034004. Available at: https://link.aps.org/doi/10.1103/PhysRevMaterials.3.034004. Accessed June 19, 2019.

  • Ilakovac V, Louat A, Nicolaou A, Rueff J-P, Joly Y, Brouet V. Oxygen states in La- and Rh-doped Sr 2 IrO 4 probed by angle-resolved photoemission and O K -edge resonant inelastic x-ray scattering. Physical Review B. 2019;99(3).

  • Jagannathan A, Jeena P, Tarzia M. Nonmonotonic crossover and scaling behavior in a disordered one-dimensional quasicrystal. Physical Review B. 2019;99(5).

  • Lu X, Goerbig M-O. Magneto-optical signatures of Volkov-Pankratov states in topological insulators. EPL (Europhysics Letters). 2019;126(6):67004.


  • Manca N, Bothner D, Monteiro AM R V L, et al. Bimodal Phase Diagram of the Superfluid Density in LaAlO 3 / SrTi O 3 Revealed by an Interfacial Waveguide Resonator. Physical Review Letters. 2019;122(3):036801. Available at: https://link.aps.org/doi/10.1103/PhysRevLett.122.036801. Accessed February 13, 2019.