Accueil > Français > Thèmes

Nouveaux états électroniques de la matière


Nouveaux états électroniques de la matière

L’existence de fortes corrélations entre électrons provoque l’apparition de nouveaux états de la matière, originaux et inattendus : par exemple la supraconductivité à haute température, des ordres de charges et de spin, les effets Hall quantiques ou encore les liquides de spin. Une activité importante du laboratoire de Physique des Solides concerne l’étude a la fois expérimentale et théorique de matériaux présentant ces propriétés remarquables.

Supraconductivité
un aimant en lévitation au dessus d’un supraconducteur
Spins frustrés
des spins frustrés présentant un mode d’énergie nulle
Conducteur moléculaire
conducteur moléculaire unidimensionnel

Équipes scientifiques :

- Corrélations électroniques et Hautes Pressions
- Matière et rayonnement
- Spectroscopies des matériaux quantiques
- Supraconductivité
- Théorie

Thématiques :
Matériaux et techniques :
 
- conducteurs de basse dimension
- supraconductivité
- liquides de spin et frustration géométrique
- fermions fortement corrélés
- ordres de charge et de spin
- effets Hall quantiques
- gaz atomiques ultra froids
- effet Kondo et fermions lourds
- memoires non-volatiles
 
- haute pression
- mesures de transport
- mesures magnétiques (squid, torsion...)
- Résonance Magnétique Nucléaire (RMN)
- Résonance de Spin de Muons (muSR)
- photoémission
- rayons X
- basses températures
- films minces
- synthèse et chimie des matériaux
- théories de champ moyen dynamique

- oxydes à propriétés remarquables

- conducteurs organiques

- fullerènes

- cuprates supraconducteurs

- cobaltites

 

Publications récentes :
 


  • Rodríguez-Fortea A, Kaleta J, Mézière C, et al. Asymmetric Choreography in Pairs of Orthogonal Rotors. ACS Omega. 2018;3(1):1293-1297.

  • Hachem H, Xu Z, Bellec N, et al. Neutral, closed-shell nickel bis(2-alkylthio-thiazole-4,5-dithiolate) complexes as single component molecular conductors. Dalton Transactions. 2018;47(18):6580–6589.


  • Sedeki A, Auban-Senzier P, Yonezawa S, Bourbonnais C, Jerome D. Influence of carrier lifetime on quantum criticality and superconducting T c of (TMTSF) 2 ClO 4. Physical Review B. 2018;98(11). Available at: https://link.aps.org/doi/10.1103/PhysRevB.98.115111. Consulté septembre 27, 2018.

  • Jeannin O, Reinheimer EW, Foury-Leylekian P, et al. Decoupling anion-ordering and spin-Peierls transitions in a strongly one-dimensional organic conductor with a chessboard structure, ( <i>o</i> -Me <sub>2</sub> TTF) <sub>2</sub> NO <sub>3</sub>. IUCrJ. 2018;5(3):361-372.

  • Park S, Lansac Y, Jang YH. Sub-nanometer pore formation in single-molecule-thick polyurea molecular-sieving membrane: a computational study. Physical Chemistry Chemical Physics. 2018;20(24):16463-16468.

  • Martins C, Lenz B, Perfetti L, Brouet V, Bertran F, Biermann S. Nonlocal Coulomb correlations in pure and electron-doped Sr 2 IrO 4 : Spectral functions, Fermi surface, and pseudo-gap-like spectral weight distributions from oriented cluster dynamical mean-field theory. Physical Review Materials. 2018;2(3):032001.

  • Boldrin D, Fåk B, Canévet E, et al. Vesignieite: An S = 1 2 Kagome Antiferromagnet with Dominant Third-Neighbor Exchange. Physical Review Letters. 2018;121(10).

  • Louat A, Bert F, Serrier-Garcia L, et al. Formation of an incoherent metallic state in Rh-doped Sr 2 IrO 4. Physical Review B. 2018;97(16):161109.

  • Foury-Leylekian P, Ilakovac V, Balédent V, et al. (BEDT-TTF)2Cu2(CN)3 Spin Liquid: Beyond the Average Structure. Crystals. 2018;8(4):158.

  • Caputo M, Khalil L, Papalazarou E, et al. Dynamics of out-of-equilibrium electron and hole pockets in the type-II Weyl semimetal candidate WTe 2. Physical Review B. 2018;97(11):115115.