Accueil > Français > Thèmes

Phénomènes physiques aux dimensions réduites


Phénomènes physiques aux dimensions réduites

Plusieurs équipes s’intéressent aux phénomènes physiques propres aux objets de dimensions réduites : surfaces, nano-objets, molécules et atomes. Les propriétés explorées sont la dynamique de l’aimantation pour les nanomatériaux magnétiques, le comportement électronique (quantique) à basse température des circuits mésoscopiques ou molécules individuelles, la thermodynamique des surfaces ou des nanostructures, la dynamique de croissance, les gaps et états photoniques dans les structures nano-photoniques, les réponses électromagnétiques ainsi que la structure électronique de nano-objets individuels. La caractérisation d’ensembles de nano-objets et/ou de nano-objets individuels met en jeu différentes méthodes complémentaires : diffraction d’électrons lents, microscopies et spectroscopies d’électrons rapides, diffusion des rayons X, désorption d’ions par impact d’électrons de très basse énergie, et microscopie optique.


Fullerènes à l’intérieur d’un nanotube de carbone.

Échantillon pour la mesure des fluctuations de courant à haute-fréquence.

Structure photonique réalisée avec un faisceau d’ions focalisé.

Équipes scientifiques :
 
- Les nanostructures à la nanoseconde
- Imagerie et dynamique en magnétisme
- Microscopie électronique
- Matière et rayonnement
- Physique mésoscopique
- Théorie

Thèmes de recherche :
Matériaux et techniques :
 
- Magnétisme
- Supraconductivité, superfluidité
- Cohérence quantique
- Physique mésoscopique
- Électronique moléculaire
- Nanophotonique
- Structure de nano-objets
- Défauts et impuretés
- Surfaces
 
- Nanotube de carbone
- Nanofils
- Fullerenes
- ADN
- Nanostructures magnétique
- Structures photoniques

- Rayons X

- Spectroscopie par perte d’énergie électronique (EELS)

- Optique

- Modélisation

- Basses températures

- Hautes fréquences

- Transport électronique

- Microscopie électronique

- Microscopie électronique (MEB)

- Microscope à force atomique (AFM)

- Microscope à force magnétique (MFM)

- Faisceau d’ions focalisé (FIF)

- Diffraction d’électrons lents (DEL)

- DEL oscillante en mode thermique (DELOT)

- Ultravide (UHV)

 

Publications récentes :
 



  • Trif M, Dmytruk O, Bouchiat H, Aguado R, Simon P. Dynamic current susceptibility as a probe of Majorana bound states in nanowire-based Josephson junctions. Physical Review B. 2018;97(4). Available at: https://link.aps.org/doi/10.1103/PhysRevB.97.041415. Consulté février 23, 2018.

  • Nakamura M, Tarento R-J. Liquid-drop model for fragmentation of multiply charged mercury clusters. The Journal of Chemical Physics. 2018;148(8):084312.

  • Dvir T, Massee F, Attias L, et al. Spectroscopy of bulk and few-layer superconducting NbSe2 with van der Waals tunnel junctions. Nature Communications. 2018;9(1).

  • Bayliss SL, Weiss LR, Mitioglu A, et al. Site-selective measurement of coupled spin pairs in an organic semiconductor. Proceedings of the National Academy of Sciences. 2018;115(20):5077-5082.

  • Camosi L, Rougemaille N, Fruchart O, Vogel J, Rohart S. Micromagnetics of antiskyrmions in ultrathin films. Physical Review B. 2018;97(13).

  • Bragança H, Sakai S, Aguiar M C O, Civelli M. Correlation-Driven Lifshitz Transition at the Emergence of the Pseudogap Phase in the Two-Dimensional Hubbard Model. Physical Review Letters. 2018;120(6).

  • Lourenço-Martins H, Kociak M, Meuret S, et al. Probing Plasmon-NV <sup>0</sup> Coupling at the Nanometer Scale with Photons and Fast Electrons. ACS Photonics. 2018;5(2):324-328.

  • Samet L, March K, Stéphan O, et al. Radiocatalytic Cu-incorporated TiO 2 nano-particles for the degradation of organic species under gamma irradiation. Journal of Alloys and Compounds. 2018;743:175-186.


  • Chiodi F, Bayliss SL, Barast L, et al. Room temperature magneto-optic effect in silicon light-emitting diodes. Nature Communications. 2018;9(1). Available at: http://www.nature.com/articles/s41467-017-02804-6. Consulté février 23, 2018.

  • Wakamura T, Reale F, Palczynski P, Guéron S, Mattevi C, Bouchiat H. Strong Anisotropic Spin-Orbit Interaction Induced in Graphene by Monolayer WS 2. Physical Review Letters. 2018;120(10).