Accueil > Français > Événements > Séminaires > Séminaires Matière Molle > Archives 2017

Formation of Poly(methacrylic acid) (PMAA) physical gels, effect of temperature and shear. - Clémence Le Coeur

Institut Chimie Matériaux Paris Est, Thiais, France & Laboratoire Léon Brillouin, Gif-sur-Yvette, France


Poly(methacrylic acid) (PMAA) is a polyelectrolyte which has been rather scarcely investigated in the literature, despite its various and very interesting physical properties. The behavior of PMAA solutions is drastically different from the one displayed by the extensively studied poly(acrylic acid), due to the methyl group located in the alpha position of the carboxylic acid function. At low ionization degrees in aqueous solvent, synergetic effects resulting from both hydrophobic interactions (methyl groups) and intramolecular hydrogen bonds between acidic groups are responsible for the hypercoiled conformation of the PMAA chains. Nevertheless, above a critical ionization degree, the PMAA macromolecule behaves as an extended chain similar to a usual highly charged polyelectrolyte. The main purpose of this work is to correlate the rheological properties to the structure of the chains for semi-dilute solutions of PMAA.

In the semi-dilute regime, above a critical concentration, PMAA solutions display a sharp increase in their viscosity over time under shear. This phenomenon known as antithixotropy occurs only when the macromolecules adopt a hypercoiled conformation. The influence of both concentration and ionization degree on the rheological behavior of PMAA solutions was studied. Shear induces the formation of intermolecular bonds which are responsible for the formation of a physical gel.

Neutral PMAA chains in water also display also a Lower Critical Solution Temperature (LCST) around 67°C. The reorientational dynamics of water molecules above the LCST was studied by means of NMR experiments, which evidenced the dehydration of the polymer coils during phase separation. The formation of interfaces between polymer-rich and polymer-poor domains was investigated by small-angle neutron scattering experiments. A possible mechanism describing the transition at the molecular level was derived from the results obtained throughout the use of complementary experimental approaches. This mechanism is very similar to the one proposed for the LCST transition of poly(N-isopropylacrylamide) (PNIPAM). The cloud point temperature of PMAA solutions is the same as the gel temperature at which a viscoelastic gel is formed.

Agenda

Ajouter un événement iCal