Accueil > English > Topics

Physical phenomena with reduced dimensions

Several research groups focus on the physical properties unique to reduced dimensions and nano-objects, such as surfaces, nanostructures, molecules and atoms. We experimentally and theoretically investigate the magnetization dynamics of magnetic materials, the (quantum) electronic properties at low temperatures of mesoscopic circuits or individual molecules, the thermodynamics of surfaces or nanostructures, the dynamics of growth, photonic gaps and states in nano-photonic structures, the electromagnetic response and electronic structure of individual nano-objects. The characterization of individual or ensembles of nano-objects is achieved with complementary techniques : low-energy electron diffraction, high-energy electron spectroscopy and microscopy, X-Ray scattering, ion desorption by impact of very low energy electrons, and optical microscopy.

A nanotube peapod.

Sample for the measurement of high-frequency current fluctuations.

Photonic structure fabricated with a focus ion beam.

Scientific teams :
- Nanosecond Transport in Nanostructures
- Imaging and Dynamics in Magnetism
- Electron microscopy
- Matter and Radiation
- Mesoscopic physics
- Artificial structures and self-organisation
- Theory

Research topics :
Materials and techniques :
- Magnetism
- Superconductivity, superfluidity
- Quantum coherence
- Mesoscopic physics
- Molecular electronics
- Nanophotonics
- Structure of nano-objects
- Impurities and defects
- Surfaces
- Carbon nanotubes
- Nanowires
- Fullerene molecules
- Magnetic nanostructures
- Photonic nanostructures
- Surfaces

- X-Rays

- Electronic Energy Loss Spectroscopy (EELS)

- Optics

- Models, simulations

- Low temperatures

- High frequencies

- Electronic transport

- Electron microscopy (SEM)

- Atomic force microscope (AFM)

- Magnetic force microscope (MFM)

- Focused ion beam (FIB)

- Low-energy electron diffraction (LEED)

- Oscillating LEED in thermal mode (TOLEED)

- Ultra-high vacuum (UHV)


Recent publications :


  • Amjadi M, Hallaj T, Asadollahi H, Song Z, de Frutos M, Hildebrandt N. Facile synthesis of carbon quantum dot/silver nanocomposite and its application for colorimetric detection of methimazole. Sensors and Actuators B: Chemical. 2017;244:425-432.

  • Barrès T, Tribollet B, Stéphan O, Montigaud H, Boinet M, Cohin Y. Characterization of the porosity of silicon nitride thin layers by Electrochemical Impedance Spectroscopy. Electrochimica Acta. 2017;227:1-6.

  • Bobroff J. Reimagining physics. Nature Nanotechnology. 2017;12(5):496-496.

  • Bouquet F, Bobroff J, Fuchs-Gallezot M, Maurines L. Project-based physics labs using low-cost open-source hardware. American Journal of Physics. 2017;85(3):216-222.

  • Campos A, Arbouet A, Martin J?r?me, et al. Plasmonic Breathing and Edge Modes in Aluminum Nanotriangles. ACS Photonics. 2017;4(5):1257-1263. Available at:

  • Charlier P, Weil R, Deblock R, Augias A, Deo S. Helium ion microscopy (HIM): Proof of the applicability on altered human remains (hairs of Holy Maria-Magdalena). Legal Medicine. 2017;24:84-85.

  • Colliex C. From a physicist's toy to an indispensable analytical tool in many fields of science. Ultramicroscopy. 2017;180:14-21.

  • Conrad M, Wang F, Nevius M, et al. Wide Band Gap Semiconductor from a Hidden 2D Incommensurate Graphene Phase. Nano Letters. 2017;17(1):341-347.

  • Daukiya L, Mattioli C, Aubel D, et al. Covalent Functionalization by Cycloaddition Reactions of Pristine Defect-Free Graphene. ACS Nano. 2017;11(1):627-634.

  • Ferrier M, Arakawa T, Hata T, et al. Quantum Fluctuations along Symmetry Crossover in a Kondo-Correlated Quantum Dot. Physical Review Letters. 2017;118(19).