Accueil > English > Topics

Physical phenomena with reduced dimensions


Several research groups focus on the physical properties unique to reduced dimensions and nano-objects, such as surfaces, nanostructures, molecules and atoms. We experimentally and theoretically investigate the magnetization dynamics of magnetic materials, the (quantum) electronic properties at low temperatures of mesoscopic circuits or individual molecules, the thermodynamics of surfaces or nanostructures, the dynamics of growth, photonic gaps and states in nano-photonic structures, the electromagnetic response and electronic structure of individual nano-objects. The characterization of individual or ensembles of nano-objects is achieved with complementary techniques : low-energy electron diffraction, high-energy electron spectroscopy and microscopy, X-Ray scattering, ion desorption by impact of very low energy electrons, and optical microscopy.


A nanotube peapod.

Sample for the measurement of high-frequency current fluctuations.

Photonic structure fabricated with a focus ion beam.

Scientific teams :
 
- Nanosecond Transport in Nanostructures
- Imaging and Dynamics in Magnetism
- Electron microscopy
- Matter and Radiation
- Mesoscopic physics
- Artificial structures and self-organisation
- Theory

Research topics :
Materials and techniques :
 
- Magnetism
- Superconductivity, superfluidity
- Quantum coherence
- Mesoscopic physics
- Molecular electronics
- Nanophotonics
- Structure of nano-objects
- Impurities and defects
- Surfaces
 
- Carbon nanotubes
- Nanowires
- Fullerene molecules
- DNA
- Magnetic nanostructures
- Photonic nanostructures
- Surfaces

- X-Rays

- Electronic Energy Loss Spectroscopy (EELS)

- Optics

- Models, simulations

- Low temperatures

- High frequencies

- Electronic transport

- Electron microscopy (SEM)

- Atomic force microscope (AFM)

- Magnetic force microscope (MFM)

- Focused ion beam (FIB)

- Low-energy electron diffraction (LEED)

- Oscillating LEED in thermal mode (TOLEED)

- Ultra-high vacuum (UHV)

 

Recent publications :
 

2018


  • Bayliss SL, Weiss LR, Mitioglu A, et al. Site-selective measurement of coupled spin pairs in an organic semiconductor. Proceedings of the National Academy of Sciences. 2018;115(20):5077-5082.

  • Berès F, Lignon G, Rouzière S, et al. Physicochemical analysis of human pulpal mineralization secondary to <i>FAM20A</i> mutations. Connective Tissue Research. 2018;59(sup1):46-51.

  • Bragança H, Sakai S, Aguiar MCO, Civelli M. Correlation-Driven Lifshitz Transition at the Emergence of the Pseudogap Phase in the Two-Dimensional Hubbard Model. Physical Review Letters. 2018;120(6):067002.

  • Camosi L, Rougemaille N, Fruchart O, Vogel J, Rohart S. Micromagnetics of antiskyrmions in ultrathin films. Physical Review B. 2018;97(13):134404.

  • Charlier P, Weil R, Rainsard P, Poupon J, Brisard JC. The remains of Adolf Hitler: A biomedical analysis and definitive identification. European Journal of Internal Medicine. 2018.

  • Chepelianskii AD, Shepelyansky DL. Floquet theory of microwave absorption by an impurity in the two-dimensional electron gas. Physical Review B. 2018;97(12):125415.

  • Chevallier D, Trif M, Dutreix C, et al. Superconductor spintronics: modeling spin and charge accumulation in out-of-equilibrium NIS junctions subjected to Zeeman magnetic fields. New Journal of Physics. 2018;20(1):013014.


  • Chiodi F, Bayliss SL, Barast L, et al. Room temperature magneto-optic effect in silicon light-emitting diodes. Nature Communications. 2018;9(1):398. Available at: http://www.nature.com/articles/s41467-017-02804-6. Consulté février 23, 2018.

  • Dassonneville B, Murani A, Ferrier M, Guéron S, Bouchiat H. Coherence-enhanced phase-dependent dissipation in long SNS Josephson junctions: Revealing Andreev bound state dynamics. Physical Review B. 2018;97(18):184505.

  • Delagrange R, Basset J, Bouchiat H, Deblock R. Emission noise and high frequency cut-off of the Kondo effect in a quantum dot. 2018;97(4):Physical Review B.