Accueil > English > Topics

Soft matter and physics-biology interface


"Soft matter", within condensed matter physics, includes not only "ordinary" liquids, but also more complex fluids. These complex fluids generally behave as liquids at a molecular scale, and simultaneously show some organization at a supramolecular scale (sometimes there are several different kinds of organization depending on the length scale). The field of application is huge, indeed soft matter is everywhere in our everyday life : cosmetics (creams, shampoos...), food (yoghurts, jellies..), mud, sand, liquid crystals (watches, computer screens), biological objects (cells) among others. The word "soft" refers to the fact that all these objects can be easily deformed, being very sensitive to external parameters (temperature, electric field...), in other words they are fragile.

The research topic named "soft matter and physics-biology interface" of our laboratory gathers very diverse physical systems, from biological materials to industrial plastic materials. Experimental studies concern organization and dynamics of soft matter systems on a wide range of length scale (from the molecular to the macroscopic scale) ; the techniques used are extremely diverse and most of them are available inside the laboratory. They are completed by theoretical studies, modelizations and numerical simulations.


Hexagonal columnar phase of nucleosomes observed with under polarizing microscope (115x171µm²).

Numerical simulation of a tear in a filled elastomer.

Faceted droplet of a liquid crystal in cubic phase, observed under optical microscope.

Scientific teams :
 
- Matter and Radiation
- Self-assembled Biological Objects
- Soft Interfaces
- Theory
- Tissues and biological fibres

Research topics :
Experimental techniques :
 
- Adhesion and friction
- filled elastomers
- Polymers
- Nanotubes in liquid crystals
- Mixtures of polymers and tensioactive materials
- Liquid crystals
- Mesoporous materials
- Mineral liquid crystals
- Soap films
- Flow of confined liquids
- Foams
- Mechanics and flow of threshold fluids
- Biological tissues and fibers
- Synthesis of metallic nanoparticles in mesophases
- Biomineralization
- DNA
 
- NMR
- AFM
- DSC
- Light scattering
- Osmometry
- Biochemistry
- Ellipsometry
- Optical microscopy
- Interfacial rheometry
- Conductimétrie
- X-rays
- Neutrons
- Numerical simulations
- Cryo-electronic microscopy

 

Recent publications :
 

2021


  • Andrieux S, Muller P, Kaushal M, et al. Microfluidic thin film pressure balance for the study of complex thin films. Lab on a Chip. 2021;21(2):412-420.


  • Andrieux S, Muller P, Kaushal M, et al. Microfluidic thin film pressure balance for the study of complex thin films. Lab on a Chip. 2021;21(2):412-420. Available at: http://xlink.rsc.org/?DOI=D0LC00974A. Consulté mars 2, 2021.

  • Cheng S, Lee M-H, Li X, et al. <i>Operando</i> characterization of conductive filaments during resistive switching in Mott VO <sub>2</sub>. Proceedings of the National Academy of Sciences. 2021;118(9):e2013676118.


  • Christodoulou I, Bourguignon T, Li X, et al. Degradation Mechanism of Porous Metal-Organic Frameworks by In Situ Atomic Force Microscopy. Nanomaterials. 2021;11(3):722. Available at: https://www.mdpi.com/2079-4991/11/3/722. Consulté avril 27, 2021.


  • Christodoulou I, Bourguignon T, Li X, et al. Degradation Mechanism of Porous Metal-Organic Frameworks by In Situ Atomic Force Microscopy. Nanomaterials. 2021;11(3):722. Available at: https://www.mdpi.com/2079-4991/11/3/722. Consulté mai 4, 2021.


  • de Izarra A, Choi C, Jang YH, Lansac Y. Ionic Liquid for PEDOT:PSS Treatment. Ion Binding Free Energy in Water Revealing the Importance of Anion Hydrophobicity. The Journal of Physical Chemistry B. 2021;125(7):1916-1923. Available at: https://pubs.acs.org/doi/10.1021/acs.jpcb.0c10068. Consulté avril 27, 2021.


  • Goldmann C, De Frutos M, Hill EH, Constantin D, Hamon C. Symmetry Breaking in Seed-Mediated Silver Nanorod Growth Induced by Dimethyl Sulfoxide. Chemistry of Materials. 2021;33(8):2948-2956. Available at: https://pubs.acs.org/doi/10.1021/acs.chemmater.1c00454. Consulté avril 27, 2021.


  • Hamlett CAE, Boniface DN, Salonen A, et al. Blowing big bubbles. Soft Matter. 2021;17(9):2404-2409. Available at: http://xlink.rsc.org/?DOI=D0SM01893G. Consulté mai 4, 2021.


  • Jovanović VP, Raffy H, Li ZZ, Reményi G, Monceau P. High magnetic-field evolution of the in-plane angular magnetoresistance of electron-doped Sr 1 − x La x CuO 2 in the normal state. Physical Review B. 2021;103(1):014520. Available at: https://link.aps.org/doi/10.1103/PhysRevB.103.014520. Consulté avril 27, 2021.


  • Mariot S, Pasquet M, Klein V, Restagno F, Rio E. A new setup for giant soap films characterization. The European Physical Journal E. 2021;44(4):52. Available at: https://link.springer.com/10.1140/epje/s10189-021-00054-5. Consulté avril 27, 2021.